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Abstract

We extend Nusselt|s theory of condensation accounting for subcooling of condensate at a variable wall temperature[
Neglecting vapour shear\ we derive an equation for heat transfer of a saturated pure vapour condensing on a surface of
arbitrary shape[ Using this equation\ we examine the interaction between heat transfer and nonisothermality specifying
the conditions that give the mean heat transfer coe.cient independent of the temperature pro_les[ Applying these
conditions to the condensation on a horizontal circular tube and on a sphere\ we analytically con_rm some numerical
results from the literature[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A area of cooling surface
B parameter\ amplitude of temperature
c speci_c heat capacity
C constant of integration\ also integral equation "23#
D tube "sphere# diameter
f nonisothermality function
F function depending on surface shape
` acceleration due to gravity
Dh latent heat
J extension of cooling surface orthogonal to con!
densate ~ow
k thermal conductivity
Ku Kutateladze number
P pressure
Q heat ~ow
q heat ~ux
s coordinate in direction of condensate ~ow\ arc length\
Fig[0
S arc length of cooling surface in direction of con!
densate ~ow[

Greek symbols
a local heat transfer coe.cient
a¹ mean heat transfer coe.cient
x nondimensional quantity\ equation "02#

� Corresponding author[ Tel[] 9938 600 574 5902] fax] 9938
600 574 5039^ e!mail] mitrovicÝitt[uni!stuttgart[de

d local thickness of condensate _lm
f angle\ Fig[ 0
n kinematic viscosity
Dr density di}erence\ Dr � rL−rV

q temperature
Dq average temperature di}erence
t shear stress[

Subscripts
I interface\ saturation
L liquid
s in s direction
W wall\ cooling surface
9 constant value[

0[ Introduction

In an article\ published in this journal\ Memory and
Rose ð0Ł treated free convection laminar _lm con!
densation on a horizontal circular tube\ the temperature
of which was assumed to be constant in the axial\ but to
obey a cosine distribution in the circumferential direc!
tion[ Velocity and temperature pro_les in the _lm were
those of the Nusselt ð1Ł model[ The di}erential equation
for heat transfer thus obtained was solved numerically\
demonstrating that the mean heat transfer coe.cient is
practically independent of the amplitude of the cir!
cumferential temperature distribution[ We quote from
the text following equation "06# of ð0Ł] {{In fact C
increased slightly with increasing A but was constant to
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four signi_cant _gures\ with a value of 9[6179 for all
values of A[|| For reasons of completeness\ we should
add to this statement that C represents an integral\ the
integrand of which contains the function of the tem!
perature distribution with A as its amplitude[ Recently\
Hsu and Yang ð2Ł arrived at a similar conclusion con!
cerning free convection condensation on a sphere[

Condensation on a surface of variable temperature has
already been studied by Bromley et al[ ð3Ł[ They also
measured temperature distribution on the circumference
of a horizontal circular tube\ showing the mean heat
transfer coe.cient\ determined with the average tem!
perature di}erence\ to largely obey the Nusselt theory[
Neglecting subcooling of condensate\ Labuntsov ð4Ł pub!
lished an analysis of free convection condensation under
nonisothermal conditions which is seemingly the most
general so far reported[ Zhou and Rose ð5Ł examined the
role played by both heat conduction and convection in
the angular direction in a liquid _lm established by con!
densation of a saturated vapour on a horizontal circular
tube in the free convection region[ They showed that\ for
the adopted distribution of the surface temperature\ the
contributions by these transport mechanisms to heat
transfer can be neglected[ For further sources on this
subject\ the reader may be referred to the article by Hsu
and Yang ð2Ł and to a very recent review paper by Rose
ð6Ł[ An overview\ provided by Fujii ð7Ł\ contains several
experimental _ndings and may particularly be rec!
ommended[

In a preceding paper ð8Ł\ we generalised the Nusselt
theory[ In an Appendix to that paper\ we also gave basic
equations for the case of a variable wall temperature and
brie~y discussed some results from the literature[ In the
present paper\ we continue and extend the considerations
sketched in ð8Ł[ Our central aim is now to state more
generally conditions for the mean heat transfer
coe.cient\ formed with the average temperature di}er!
ence\ to be independent of distributions of the tem!
peratures forcing condensation[ Having established the
conditions\ we apply them\ as examples\ to the con!
densation cases numerically treated by Memory and Rose
ð0Ł and by Hsu and Yang ð2Ł[ Performing integration of
their expressions describing free convection conden!
sation\ we con_rm their numerical results\ showing that
the amplitude of the temperature distribution adopted by
the authors does\ indeed\ not a}ect the mean heat transfer
coe.cient[

1[ The governing differential equations and their

solutions

1[0[ Expression for the heat ~ux

Using the velocity and temperature pro_les in the con!
densate _lm as in Nusselt|s theory\ one obtains on the

basis of conservation laws\ see e[g[ ð8Ł\ the following
equation for the local heat ~ux qW]

qW �
0
2

DhDr

nL

0
J

d
ds000¦

2
7

cpL"qI−qW#
Dh 1J`sd

2

¦
2
100¦

0
2

cpL"qI−qW#
Dh 1

tIJd1

Dr 1 "0#

with

`s � F"s#`[ "1#

The symbols `\ Dr\ cpL\ Dh and nL have the common
meanings^ J represents the extension of the cooling sur!
face orthogonal to the direction of condensate ~ow^ d is
the _lm thickness\ qI and qW are the temperatures\ Fig[
0[ The function F"s#\ where s is the arc length\ describes
the action of gravity on condensate ~ow[ For a vertical
surface\ F"s# � 0^ for an inclined plate\ a sphere\ and a
horizontal circular tube it is F"s# 0 F"f# � sinf[

Equation "0# is generally valid within the Nusselt
model^ it takes physical properties as constant\ but allows
changes of all other quantities\ including also the wall
temperature qW\ along the ~ow path s[ The heat ~ux qW

is therefore constant over the _lm thickness[ It consists
of two terms[ The _rst term arises from the action of the
modi_ed gravity `s on condensate ~ow\ the second term
is associated with the shear stress tI[ The contributions

Fig[ 0[ Condensation of saturated vapour illustrated for a sphere
and a horizontal tube[
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of these terms to the heat ~ux are di}erent and depend
on both the thermodynamic state of the system and con!
densation conditions[ They are\ in general\ not inde!
pendent of each other^ the gravity and shear stress terms
interact at least over the temperature di}erence qI− qW[
For example\ a higher temperature di}erence may result
in a larger ~ux of condensing vapour on the _lm surface\
thereby in~uencing the shear stress[

The temperature di}erence qI−qW\ appearing in the
two terms of equation "0#\ accounts for the condensate
subcooling[ The subcooling e}ect on heat transfer can
mostly be neglected at a low saturation temperature\ but
not in the region near the thermodynamic critical point\
where cpL increases and Dh decreases as the critical tem!
perature is approached[

In the present paper\ we neglect the vapour shear at the
_lm surface\ that is\ we set tI � 9[ This condition is known
from the literature to specify free convection con!
densation implying that the vapour velocity be the same
everywhere and\ at the same time\ coincides with that of
the _lm surface[ Strictly viewed\ this is impossible in a
general case of a varying _lm thickness d and:or a chan!
ging function F"s# in equation "1# in the direction of
condensate ~ow[

1[1[ The _lm thickness and the heat transfer coef_cient

The heat ~ux qW is used to de_ne a local heat transfer
coe.cient a\

qW � a"qI−qW# �
kL

d
"qI−qW#\ "2#

where kL is the thermal conductivity of condensate[
If the temperature di}erence qI−qW varies\ we may\

following Labuntsov ð4Ł\ see also Memory and Rose ð0Ł
and Rose ð6Ł\ introduce an average temperature di}er!
ence Dq by

qI−qW � Dqf"s# "3#

with f"s# as a temperature distribution function account!
ing for the nonisothermality e}ect in the direction of
condensate ~ow[ By de_nition\

0
AgA

f"s# dA 0 0\ "4#

if A is the area of the cooling surface and dA its element[
Therefore\ for a constant temperature di}erence qI−qW\
it is f"s# � 0[

Setting tI � 9 in equation "0# and combining with
equations "2# and "3#\ gives

kL

d
Dqf"s# �

0
2

DhDr`
nL

0
J

d
ds000¦

2
7
Kuf"s#1Jd2F"s#1\ "5#

where the Kutateladze number Ku\

Ku �
cpLDq

Dh
\ "6#

measures the maximum subcooling of condensate in
terms of the latent heat[ This quantity is sometimes called
the number of phase change or the Jakob number[

When integrated\ equation "5# delivers the _lm thick!
ness d\

d �
"1:D#0:3d9

000¦
2
7
Kuf"s#1JF"s#1

0:2

×0
3
2g

S

9 000¦
2
7
Kuf"s#1JF"s#1

0:2

J f"s# ds¦C1
0:3

\ "7#

with C as an integration constant\ and

d9 � 0
2
1

nLkLDqD
DrDh` 1

0:3

[ "8#

The arbitrary length D "more precisely D:1# introduced
here simpli_es the matter in that the quantity d9 takes the
nature of a length[ With condensation on a horizontal
circular tube or on a sphere of the diameter D\ d9 is shown
later to become equal or proportional " for sphere# to the
_lm thickness at s � 9 "f � 9#\ if there is no condensate
inundation\ Fig[ 0[

The constant C of integration in equation "7# depends
on the shape of the surface[ For condensation on a ver!
tical bank of horizontal tubes and on a hanging chain of
spheres\ the constant C was determined in ð8Ł assuming
the driving temperature di}erence to be constant\ that is\
for f"s# � 0[ The same procedure applies also for f"s#� 0[
In the case that C � 9\ Ku � 9 and J � const\ equation
"7# simpli_es to an expression _rst derived by Labuntsov
ð4Ł[

The mean heat transfer coe.cient a¹ over an area A of
the surface is de_ned by

Qþ � a¹DqA � gA

qW dA\

from which\ considering equation "2#\ further\ putting
dA � J ds\ we obtain

a¹ �
0
AgA

aJ ds �
kL

AgA

J

d
ds[ "09#

Combining expressions "7# and "09# gives

a¹ �
kL

d90
D
11

0:3 0
A

×g
S

9

000¦
2
7
Kuf"s#1JF"s#1

0:2

J f"s# ds

0
3
2g

s

9000¦
2
7
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0:2

J f"s# ds¦C1
0:3

"00#

or\ after integration\
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a¹ �
kL

d9

x � 0
1
2

DrDh`k2
L

nLDqD 1
0:3

x\ "01#

where

x � 0
D
11

0:3 0
A00

3
2g

S

9 000¦
2
7
Kuf"s#1JF"s#1

0:2

×J f"s# ds¦C1
2:3

−C2:31[ "02#

Depending on the functions J\ F"s# and f"s#\ and on
condensation conditions\ the integral in equation "02#
can be solved analytically\ written more compactly\ or
must be evaluated numerically in this form[ Equation
"01# is generally valid at tI � 9\ see Fig[ 0[

For simplicity\ we assume in the following a vapour
condensation without condensate inundation[ Then\
C � 9\ and\ from equation "02#

x � 0
D
11

0:3 0
A0

3
2g

S

9 000¦
2
7
Kuf"s#1JF"s#1

0:2

J f"s# ds1
2:3

[

"03#

This equation makes the basis of our further analysis\
where we _rst apply it to a few familiar condensation
cases at a constant temperature di}erence\ and then dis!
cuss the interaction between heat transfer and non!
isothermality[ In this connection\ we may note that the
analysis\ undertaken below\ is not con_ned to con!
densation without condensate inundation "C � 9#^ it is
also applicable to condensation cases with condensate
inundation\ for which C � 9[ A way of obtaining the
constant C is described in a previous study ð8Ł[

2[ Constant temperature difference

For a constant temperature di}erence\ f"s# � 0\ equa!
tion "03# reduces to

x � 00¦
2
7
Ku1

0:3

0
D
11

0:3 0
A0

3
2g

S

9

"JF"s##0:2J ds1
2:3

[

"04#

This equation\ combined with equation "01#\ contains
all the cases of the Nusselt condensation of a saturated
vapour[ For example\ if condensation is taking place on
a vertical tube of a constant diameter D\ or on a vertical
plate\ we have J � const[ and F"s# � 0[ Then\

x �
3
200¦

2
7
Ku1

0:3

0
0
3

2
1

D
S1

0:3

\ "05#

where S is the tube length\ or the plate height[ Taken
together\ equations "01# and "05# result in the original
Nusselt expression\ if Ku � 9[

In the case of a horizontal circular tube\ J � const[\
ds �"D:1# df and F"s# � sinf\ Fig[ 0[ Thus\

x �
0
p00¦

2
7
Ku1

0:3

0
3
2g

p

9

sin0:2f df1
2:3

"06#

with the numerical value

g
p

9

sin0:2 f df ¼ 1[4760[

Combining "01# and "06# gives the Nusselt expression for
a single tube with the numerical value of the constant
9[6179[ The actual value is somewhat larger\ which is
without any practical signi_cance\ see e[g[ ð6Ł[

Where the cooling surface is a sphere "F"s# � sinf\
J � Dp sin f#\ equation "04# becomes

x �
0
100¦

2
7
Ku1

0:3

0
3
2g

p

9

sin4:2 f df1
2:3

"07#

with

g
p

9

sin4:2 f df ¼ 0[57151[

Equations "01# and "07# result in an expression derived
_rst by Dhir and Lienhard ð09Ł[ The numerical value of
the constant in the expression for the mean heat transfer
coe.cient obtained by these authors is 9[674^ it disagrees
with the corresponding value obtained in the present
paper[ A similar situation occurs with the results by Yang
ð00Ł\ who reported the constant to be 9[792[ However\
our numerical value of 9[7171 agrees with that by Hsu
and Yang ð2Ł[ Note that also here\ like for tube\ the actual
value of the constant is insigni_cantly larger[

3[ Variable temperature difference

3[0[ Independence of heat transfer coef_cient from non!
isothermality function

In this section\ we examine the conditions for the mean
heat transfer coe.cient a¹ to be independent of the tem!
perature distribution function f"s# 0 f[ Such conditions
require the relation

1x
1f

� 9\ "08#

which\ with x from equation "03#\ gives the expression

1

1fg
S

9 000¦
2
7
Kuf"s#1JF"s#1

0:2

J f"s# ds � 9[ "19#

A further treatment of equation "19# seems impossible in
the general case[ Thus\ assumptions about the members
of the integrand are needed and\ as an example\ we force
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00¦
2
7
Kuf"s#1JF"s# � const[ "10#

over the entire surface[ Then\ equation "19#\ divided by
A � A" f #\ simpli_es to

1

1f0
0
AgA

f"s# dA1� 9\ "11#

where dA � J ds[
Because of the identity "4#\ equation "11# is satis_ed\

whatever the shape of the nonisothermality function f"s#[
Therefore\ in this case\ expression "10# assumes the nature
of a criterion equation[ It connects the nonisothermality
function f"s# with the shape of the surface\ resulting in
the mean heat transfer coe.cient a¹ independent of f"s#[

On the basis of equation "10#\ we may distinguish two
particular cases[ One of them is speci_ed by taking the
product JF"s# as constant\ resulting in an invariable func!
tion f"s#[ Clearly\ this has no physical signi_cance\ except
for the isothermal conditions[ The other case\ namely\
Ku:9\ allows some interesting conclusions[

3[0[0[ Case of a small Ku
For a negligibly small value of Ku\ the e}ect of f"s#

disappears and equation "10# reduces further\ giving

JF"s# � const[ "12#

By inserting this condition into equation "03#\ and con!
sidering equation "4#\ we obtain

x �
3
20

0
3

2
1

DJF
A 1

0:3

0
0
Ag

S

9

f"s#J ds1
2:3

�
3
20

0
3

2
1

DF
S 1

0:3

\

"13#

where S � A:J "if J varies with s\ then J 0"ÐS
9J ds#:S as

a mean value#[
Equation "13# expresses a statement by Labuntsov ð4Ł[

It shows that the mean heat transfer coe.cient a¹\ de_ned
with the average temperature di}erence\ is independent
of the shape of the nonisothermality of the surfaces\
sandwiching the condensate _lm[ The simplest cases\
where the equation applies\ are those of a plane wall and
a vertical tube[ However\ equation "12# allows creation
of a family of surfaces\ for which the nonisothermality
e}ect is negligible and equation "13# holds[

3[0[1[ Nonisothermality function depends on a
parameter

If the nonisothermality function contains a parameter\
say B\ so that f"s# 0 f"B\ s#\ then\ with 1:1f �
"1:1B#"1B:1f #\ equation "19# may be written as

1

1Bg
S

9 000¦
2
7
Kuf"B\ s#1JF"s#1

0:2

J f"B\ s# ds � 9\ "14#

for 1B:1f � 9\ or

g
S

9

0¦
0
1
Kuf"B\ s#

00¦
2
7
Kuf"B\ s#1

1:2

1f"B\ s#
1B

"JF"s##0:2J ds � 9\ "15#

if the integrand in equation "14# is a linear function of B[
This expression speci_es the conditions to be ful_lled for
the mean heat transfer coe.cient not to depend on B[
For a very low condensate subcooling\ that is\ for
Kuf"B\ s#:9\ or generally\ for

0¦
0
1
Kuf"B\ s#

00¦
2
7
Kuf"B\ s#1

1:2
¼ const[

equation "15# reduces to

g
S

9

1f"B\ s#
1B

"JF"s##0:2J ds � 9[ "16#

As an example\ equation "16# may now be applied to a
horizontal circular tube and to a sphere\ where
ds �"D:1# df and F"s# 0 F"f# � sinf\ for both surfaces[
Since for a tube\ J � const[ and\ replacing s and S
through f and p\ we have

g
p

9

1f"B\ f#
1B

sin0:2 f df � 9[ "17#

For a sphere\ J � pD sin f\ thus\

g
p

9

1f"B\f#
1B

sin4:2 f df � 9[ "18#

To evaluate the integrals in equations "17# and "18#\ we
choose

f"B\ f# � 0−B cos f\ "29#

as adopted by Memory and Rose ð0Ł for a horizontal
circular tube and by Hsu and Yang ð2Ł for a sphere[
The parameter B takes the role of the amplitude of the
nonisothermality function[0 Note that Fuji ð7Ł discusses
a theoretical expression for the distribution of the surface
temperature at a constant heat ~ux[ His expression\ how!
ever\ is scarcely applicable in the region of condensate
departure from the tube^ for f � p\ it delivers in_nite
temperature[ Therefore\ it should not be pursued further
in the current article[

With the nonisothermality function "29#\ the integrals

0 Condensation experiments by the present author ð01Ł on a
horizontal tube having a capillary structure on its outside surface
does not con_rm the simple shape of equation "29#[ The wall
temperature is generally not symmetrical about f � p:1\ as
expressed by this equation[ The position of the in~ection point of
the circumferential temperature distribution depends on cooling
conditions[
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"17# and "18# become zero\ showing that the mean heat
transfer coe.cient does not depend on B[ In this connec!
tion\ we should emphasise that the results we arrive at
and the conclusion drawn hold under speci_c conditions
only\ for example\ for Kuf"B\ s#:9\ which means for no
condensate subcooling or for a very weak variation of
f"B\ s# over the cooling surface[ In a more general case\
however\ equation "14# and not equation "16# should be
used which might give a completely di}erent picture[

The conclusion drawn on the basis of equations "17Ð
29# could be veri_ed by integrating equation "03#\ which
would be possible analytically for a horizontal tube and
a sphere at Ku � 9\ using equation "29# for the function
f"B\ s#[ Instead of equation "03#\ however\ we should
prefer to take expressions from the literature[

3[1[ Expressions from the literature

Hsu and Yang ð2Ł obtained for free convection con!
densation of a pure vapour on a single sphere "expression
"20# in their paper# the equation

Nu0
Ja
Ra1

0:3

�
0
1g

p

9

"0−B cos f#sin4:2 f df

01g
p

9

"0−B sin4:2f df1
0:3

[ "20#

For de_nitions of the quantities Nu\ Ja and Ra\ the reader
may be referred to the original paper[ The symbol B in
this equation represents the amplitude of the non!
isothermality function f"B\ f#\ which coincides with those
of Memory and Rose ð0Ł\ the above equation "29#[ The
authors ð2Ł treated equation "20# numerically\ concluding
that the heat transfer is practically una}ected by B[

However\ when integrated analytically\ equation "20#
gives

Nu0
Ja
Ra1

0:3

�
0
201g

p

9

"0−B cos f#sin4:2 f df1
2:3

�
0
201g

p

9

sin4:2 f df1
2:3

"21#

which is independent of B[
This result disagrees with our equation "03#\ which\

regarding equation "29#\ becomes

x �
0
10

3
2g

p

9 00¦
2
7
Ku"0−B cos f#1

0:2

×"0−B cos f#sin4:2 f df1
0:3

[ "22#

To decide with certainty whether or not x depends on B\
a numerical evaluation of the integral would be necessary[
But\ even without integration\ the complexity of the inte!
grand suggests a dependence of x on B\ except for Ku � 9[
The disagreement between equation "22# and equation
"21#\ concerning the quantity B\ originates in the fact that

Hsu and Yang ð2Ł allowed f"s# to change in the driving
temperature di}erence\ used to de_ne the heat transfer
coe.cient\ but not in the condensate subcooling term\
where they put\ inconsistently\ f"s# � 0\ see ð8Ł[

Further\ the integral in the expression for C\1 given by
Memory and Rose ð0Ł\ and quoted in the introduction of
the current paper\ can easily be performed\ resulting in

C �
0
pg

p

9 2
"0−B cos f#sin0:2 f df

01g
f

9

sin0:2 f df−
2
1
B sin3:2 f1

0:33
�

1
2p01g

p

9

sin0:2 f df1
2:3

\ "23#

which is independent of the amplitude of the wall tem!
perature variation\ and which immediately leads to the
Nusselt expression under isothermal conditions[

Equation "23# explains the _ndings of Bromley et al[
ð3Ł\ who showed the average heat transfer coe.cient on
horizontal tubes\ determined with the average tem!
perature di}erence\ to obey the Nusselt theory\ despite
the considerable nonisothermality of the cooling surface
measured by the authors[ The same applies to the exper!
iments by Memory and Rose ð0Ł[ In connection with the
numerical results reported in ð0\ 2Ł\ we may state that our
analytical expressions con_rm the high accuracy of the
numerical evaluations of the integrals[

4[ Conclusions

In this work\ we derived a general equation for heat
transfer in laminar _lm condensation of a pure\ saturated
vapour with free convection[ The equation accounts for
the condensate subcooling and nonisothermality\ the lat!
ter arising from the wall temperature[ The model used is
that of Nusselt ð1Ł\ the shape of the cooling surface is
arbitrary[

The general equation is applied to condensation with
no condensate inundation and analysed with respect to
the shape of nonisothermality[ The analysis speci_es the
conditions to be ful_lled for the mean heat transfer
coe.cient\ obtained with the average temperature di}er!
ence\ to be independent of temperature variations of the
surfaces sandwiching the condensate _lm[ In cases of
condensation on a horizontal circular tube and on a
sphere at no condensate subcooling\ it is shown that the
shape of the nonisothermality functions used ð0\ 2Ł do
not a}ect the condensation heat transfer[

1 To prevent confusion\ we should emphasise that C in equa!
tion "23# is completely di}erent from the integration constant C
in the above derivations[
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