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Abstract

We extend Nusselt’s theory of condensation accounting for subcooling of condensate at a variable wall temperature.
Neglecting vapour shear, we derive an equation for heat transfer of a saturated pure vapour condensing on a surface of
arbitrary shape. Using this equation, we examine the interaction between heat transfer and nonisothermality specifying
the conditions that give the mean heat transfer coefficient independent of the temperature profiles. Applying these
conditions to the condensation on a horizontal circular tube and on a sphere, we analytically confirm some numerical
results from the literature. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

area of cooling surface

parameter, amplitude of temperature

specific heat capacity

constant of integration, also integral equation (34)
tube (sphere) diameter
nonisothermality function

function depending on surface shape
g acceleration due to gravity

Ah latent heat

3 extension of cooling surface orthogonal to con-
densate flow
k  thermal conductivity
Ku Kutateladze number
P pressure

QO heat flow
g Theat flux
s coordinate in direction of condensate flow, arc length,
Fig.1
S arc length of cooling surface in direction of con-
densate flow.

MRS I

Greek symbols

o local heat transfer coefficient

& mean heat transfer coefficient

¥ nondimensional quantity, equation (13)
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0 local thickness of condensate film
¢ angle, Fig. 1

v kinematic viscosity

Ap density difference, Ap = p. — pvy
9 temperature

A9 average temperature difference
T shear stress.

Subscripts

I interface, saturation
L liquid

s in s direction

W wall, cooling surface
0 constant value.

1. Introduction

In an article, published in this journal, Memory and
Rose [1] treated free convection laminar film con-
densation on a horizontal circular tube, the temperature
of which was assumed to be constant in the axial, but to
obey a cosine distribution in the circumferential direc-
tion. Velocity and temperature profiles in the film were
those of the Nusselt [2] model. The differential equation
for heat transfer thus obtained was solved numerically,
demonstrating that the mean heat transfer coefficient is
practically independent of the amplitude of the cir-
cumferential temperature distribution. We quote from
the text following equation (17) of [1]: “In fact C
increased slightly with increasing 4 but was constant to
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four significant figures, with a value of 0.7280 for all
values of 4.” For reasons of completeness, we should
add to this statement that C represents an integral, the
integrand of which contains the function of the tem-
perature distribution with A4 as its amplitude. Recently,
Hsu and Yang [3] arrived at a similar conclusion con-
cerning free convection condensation on a sphere.

Condensation on a surface of variable temperature has
already been studied by Bromley et al. [4]. They also
measured temperature distribution on the circumference
of a horizontal circular tube, showing the mean heat
transfer coefficient, determined with the average tem-
perature difference, to largely obey the Nusselt theory.
Neglecting subcooling of condensate, Labuntsov [5] pub-
lished an analysis of free convection condensation under
nonisothermal conditions which is seemingly the most
general so far reported. Zhou and Rose [6] examined the
role played by both heat conduction and convection in
the angular direction in a liquid film established by con-
densation of a saturated vapour on a horizontal circular
tube in the free convection region. They showed that, for
the adopted distribution of the surface temperature, the
contributions by these transport mechanisms to heat
transfer can be neglected. For further sources on this
subject, the reader may be referred to the article by Hsu
and Yang [3] and to a very recent review paper by Rose
[7]. An overview, provided by Fujii [8], contains several
experimental findings and may particularly be rec-
ommended.

In a preceding paper [9], we generalised the Nusselt
theory. In an Appendix to that paper, we also gave basic
equations for the case of a variable wall temperature and
briefly discussed some results from the literature. In the
present paper, we continue and extend the considerations
sketched in [9]. Our central aim is now to state more
generally conditions for the mean heat transfer
coefficient, formed with the average temperature differ-
ence, to be independent of distributions of the tem-
peratures forcing condensation. Having established the
conditions, we apply them, as examples, to the con-
densation cases numerically treated by Memory and Rose
[1] and by Hsu and Yang [3]. Performing integration of
their expressions describing free convection conden-
sation, we confirm their numerical results, showing that
the amplitude of the temperature distribution adopted by
the authors does, indeed, not affect the mean heat transfer
coefficient.

2. The governing differential equations and their
solutions
2.1. Expression for the heat flux

Using the velocity and temperature profiles in the con-
densate film as in Nusselt’s theory, one obtains on the

basis of conservation laws, see e.g. [9], the following
equation for the local heat flux gyw:

VAR VTR PO W
w3 3ds<<1+ s An )90
3 ]ch(SI—SW) 71352
+2<1+3 v o)) o
with
g, = F(s), )

The symbols g, Ap, c,., Ah and v, have the common
meanings; J represents the extension of the cooling sur-
face orthogonal to the direction of condensate flow; J is
the film thickness, 9; and 9y are the temperatures, Fig.
1. The function F(s), where s is the arc length, describes
the action of gravity on condensate flow. For a vertical
surface, F(s) = 1; for an inclined plate, a sphere, and a
horizontal circular tube it is F(s) = F(¢) = sin ¢.
Equation (1) is generally valid within the Nusselt
model; it takes physical properties as constant, but allows
changes of all other quantities, including also the wall
temperature 3y, along the flow path s. The heat flux gy
is therefore constant over the film thickness. It consists
of two terms. The first term arises from the action of the
modified gravity g, on condensate flow, the second term
is associated with the shear stress 7. The contributions
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Fig. 1. Condensation of saturated vapour illustrated for a sphere
and a horizontal tube.
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of these terms to the heat flux are different and depend
on both the thermodynamic state of the system and con-
densation conditions. They are, in general, not inde-
pendent of each other; the gravity and shear stress terms
interact at least over the temperature difference 3;— Jy.
For example, a higher temperature difference may result
in a larger flux of condensing vapour on the film surface,
thereby influencing the shear stress.

The temperature difference 3, — 3y, appearing in the
two terms of equation (1), accounts for the condensate
subcooling. The subcooling effect on heat transfer can
mostly be neglected at a low saturation temperature, but
not in the region near the thermodynamic critical point,
where ¢, increases and A/ decreases as the critical tem-
perature is approached.

In the present paper, we neglect the vapour shear at the
film surface, that is, we set 7, = 0. This condition is known
from the literature to specify free convection con-
densation implying that the vapour velocity be the same
everywhere and, at the same time, coincides with that of
the film surface. Strictly viewed, this is impossible in a
general case of a varying film thickness ¢ and/or a chan-
ging function F(s) in equation (2) in the direction of
condensate flow.

2.2. The film thickness and the heat transfer coefficient

The heat flux gy is used to define a local heat transfer
coefficient a,

ki
qw = (%1 —Hw) = 5 (% —Iw), (©)

where k| is the thermal conductivity of condensate.

If the temperature difference 9,— 3y, varies, we may,
following Labuntsov [5], see also Memory and Rose [1]
and Rose [7], introduce an average temperature differ-
ence A3 by

S — 9w = AY(s) “
with f(s) as a temperature distribution function account-

ing for the nonisothermality effect in the direction of
condensate flow. By definition,

1
;J flsydd =1, )

if A is the area of the cooling surface and dA4 its element.
Therefore, for a constant temperature difference 3; — 3y,
itis f(s) = L.

Setting 7, =0 in equation (1) and combining with
equations (3) and (4), gives

Kiygroy 1 MMBpg 1 d ([ 3\
5A9f(8) =3 . 3ds L+ SKuf(s) J0°F(s) |, (6)
where the Kutateladze number Ku,
_ o A
Ku = 7A h (7

measures the maximum subcooling of condensate in
terms of the latent heat. This quantity is sometimes called
the number of phase change or the Jakob number.

When integrated, equation (6) delivers the film thick-
ness o,

(2/D)'*5,
<<1 n %K@@))SF@))

(5[ ((1+ 3w Joro ) soasee) @)

0

with C as an integration constant, and

(3 k ASD\*
% = (E ApAhg > ‘ ©)

The arbitrary length D (more precisely D/2) introduced
here simplifies the matter in that the quantity J, takes the
nature of a length. With condensation on a horizontal
circular tube or on a sphere of the diameter D, d, is shown
later to become equal or proportional ( for sphere) to the
film thickness at s = 0 (¢p = 0), if there is no condensate
inundation, Fig. 1.

The constant C of integration in equation (8) depends
on the shape of the surface. For condensation on a ver-
tical bank of horizontal tubes and on a hanging chain of
spheres, the constant C was determined in [9] assuming
the driving temperature difference to be constant, that is,
for f(s) = 1. The same procedure applies also for f(s) # 1.
In the case that C = 0, Ku = 0 and J = const, equation
(8) simplifies to an expression first derived by Labuntsov
[5].

The mean heat transfer coefficient & over an area A4 of
the surface is defined by

0 = aAd4 = J gw dA4,
A

from which, considering equation (3), further, putting
dA = J ds, we obtain

MUY (PN N
o(—ALotQ dS_ALé ds. (10)

Combining expressions (8) and (10) gives

R (D\* 1
*=5.\2) 4

((1+ gro Joro ) 30 s

XJS 4 - — an
0 <*J <<1+ %K“f(s)>SF(s)> S£(s) ds+ c)‘

3o

or, after integration,
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k 2 ApAhgki\'*
L (,%) , (12)

=5 737, a9D

where

D\V4 1 //4(S 3 13
y = <5> Z(GJ <<1+§Kuf(s)>3F(S)>

« 3f(s) ds+ c)m — c3/’4>. (13)

Depending on the functions J, F(s) and f(s), and on
condensation conditions, the integral in equation (13)
can be solved analytically, written more compactly, or
must be evaluated numerically in this form. Equation
(12) is generally valid at 7, = 0, see Fig. 1.

For simplicity, we assume in the following a vapour
condensation without condensate inundation. Then,
C =0, and, from equation (13)

V41 /4 3 1/3 3/4
X = <§> Z(gj <<1+§Kuf(s)>SF(s)> Sf(s)ds) .

(14)

This equation makes the basis of our further analysis,
where we first apply it to a few familiar condensation
cases at a constant temperature difference, and then dis-
cuss the interaction between heat transfer and non-
isothermality. In this connection, we may note that the
analysis, undertaken below, is not confined to con-
densation without condensate inundation (C = 0); it is
also applicable to condensation cases with condensate
inundation, for which C # 0. A way of obtaining the
constant C is described in a previous study [9].

3. Constant temperature difference

For a constant temperature difference, f(s) = 1, equa-
tion (14) reduces to

3 1/4 D 1/4 1 4 S - ie 3/4
X = <1 + gKM) <5> Z<§L (JF(s)'°3 ds> .
15)

This equation, combined with equation (12), contains
all the cases of the Nusselt condensation of a saturated
vapour. For example, if condensation is taking place on
a vertical tube of a constant diameter D, or on a vertical
plate, we have J = const. and F(s) = 1. Then,

LA IE AN (16)
=300 g \a2s) ¢

where S is the tube length, or the plate height. Taken
together, equations (12) and (16) result in the original
Nusselt expression, if Ku = 0.

In the case of a horizontal circular tube, J = const.,
ds =(D/2) d¢ and F(s) = sin ¢, Fig. 1. Thus,

1 3 1/4 4 T A 3/4
x=;<1+§Ku> (gL sin ¢>d¢> (17

with the numerical value

J sin'? ¢ d¢p ~ 2.5871.
0
Combining (12) and (17) gives the Nusselt expression for
a single tube with the numerical value of the constant
0.7280. The actual value is somewhat larger, which is
without any practical significance, see e.g. [7].

Where the cooling surface is a sphere (F(s) = sin ¢,
3 = D=sin ¢), equation (15) becomes

l 3 1/4 4 g s 3/4
X:5<1+§Ku> (gL sin” ¢d¢> (18)

with
J sin®? ¢ d¢ ~ 1.68262.
0

Equations (12) and (18) result in an expression derived
first by Dhir and Lienhard [10]. The numerical value of
the constant in the expression for the mean heat transfer
coefficient obtained by these authors is 0.785; it disagrees
with the corresponding value obtained in the present
paper. A similar situation occurs with the results by Yang
[11], who reported the constant to be 0.803. However,
our numerical value of 0.8282 agrees with that by Hsu
and Yang [3]. Note that also here, like for tube, the actual
value of the constant is insignificantly larger.

4. Variable temperature difference

4.1. Independence of heat transfer coefficient from non-
isothermality function

In this section, we examine the conditions for the mean
heat transfer coefficient & to be independent of the tem-
perature distribution function f{(s) = f. Such conditions
require the relation

% _

o 0, (19)
which, with y from equation (14), gives the expression

A (S 3 1/3
v 1+ =Kuf(s) |3F(s) | JIf(s)ds=0. (20)
of s 8

A further treatment of equation (20) seems impossible in
the general case. Thus, assumptions about the members
of the integrand are needed and, as an example, we force
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(1 + ng‘@))SF(S) = const. 21

over the entire surface. Then, equation (20), divided by
A # A(f), simplifies to

- f< J 1) dA) =0, (22)

where d4 = Jds.

Because of the identity (5), equation (22) is satisfied,
whatever the shape of the nonisothermality function f(s).
Therefore, in this case, expression (21) assumes the nature
of a criterion equation. It connects the nonisothermality
function f{(s) with the shape of the surface, resulting in
the mean heat transfer coeflicient & independent of f(s).

On the basis of equation (21), we may distinguish two
particular cases. One of them is specified by taking the
product JF(s) as constant, resulting in an invariable func-
tion f{s). Clearly, this has no physical significance, except
for the isothermal conditions. The other case, namely,
Ku—0, allows some interesting conclusions.

4.1.1. Case of a small Ku
For a negligibly small value of Ku, the effect of f(s)
disappears and equation (21) reduces further, giving

JF(s) = const. (23)

By inserting this condition into equation (14), and con-
sidering equation (5), we obtain

13D\§ /4 1 S - 3/4 l;Di /4
3(1571‘) (ZL"’ ()3 ds) 3<42 SF> .
(24)

where § = A/J (if 3 varies with s, then J = ([§3 ds)/S as
a mean value).

Equation (24) expresses a statement by Labuntsov [5].
It shows that the mean heat transfer coefficient @, defined
with the average temperature difference, is independent
of the shape of the nonisothermality of the surfaces,
sandwiching the condensate film. The simplest cases,
where the equation applies, are those of a plane wall and
a vertical tube. However, equation (23) allows creation
of a family of surfaces, for which the nonisothermality
effect is negligible and equation (24) holds.

4.1.2. Nonisothermality function depends on a
parameter

If the nonisothermality function contains a parameter,
say B, so that f(s) =f(B,s), then, with 09/0f =
(0/0B)(0B/df), equation (20) may be written as

o (s((, .3 13
ETBL <<1+§Kuf(B, s)>3F(s)> 3f(B.s5)ds=0, (25

for dB/df # 0, or

1
1+ JKuf(B.9) ﬂf(B 9

(3F()'*3ds =0, (26)

Jf<

if the integrand in equation (25) is a linear function of B.
This expression specifies the conditions to be fulfilled for
the mean heat transfer coefficient not to depend on B.
For a very low condensate subcooling, that is, for
Kuf(B, s)—0, or generally, for

1+ %Kuf(B, s)>2”

1
1+ JKuf(B.5)

; X const.

(1 + %Kuf(B, s))2

equation (26) reduces to

r of(B,s)

0

(3F(s))"*3ds = 0. @7

As an example, equation (27) may now be applied to a
horizontal circular tube and to a sphere, where

ds =(D/2) d¢ and F(s) = F(¢p) = sin ¢, for both surfaces.
Since for a tube, J = const. and, replacing s and S

through ¢ and =, we have

SB. ) s
L oy sin' ¢ dg = (28)
For a sphere, J = nD sin ¢, thus,

PBP) . s
L —osin” dg = (29)

To evaluate the integrals in equations (28) and (29), we
choose

f(B,¢) =1—Bcos ¢, (30)

as adopted by Memory and Rose [1] for a horizontal
circular tube and by Hsu and Yang [3] for a sphere.
The parameter B takes the role of the amplitude of the
nonisothermality function.' Note that Fuji [8] discusses
a theoretical expression for the distribution of the surface
temperature at a constant heat flux. His expression, how-
ever, is scarcely applicable in the region of condensate
departure from the tube; for ¢ = =, it delivers infinite
temperature. Therefore, it should not be pursued further
in the current article.

With the nonisothermality function (30), the integrals

! Condensation experiments by the present author [12] on a
horizontal tube having a capillary structure on its outside surface
does not confirm the simple shape of equation (30). The wall
temperature is generally not symmetrical about ¢ = 7/2, as
expressed by this equation. The position of the inflection point of
the circumferential temperature distribution depends on cooling
conditions.
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(28) and (29) become zero, showing that the mean heat
transfer coefficient does not depend on B. In this connec-
tion, we should emphasise that the results we arrive at
and the conclusion drawn hold under specific conditions
only, for example, for Kuf(B,s)—0, which means for no
condensate subcooling or for a very weak variation of
f(B,s) over the cooling surface. In a more general case,
however, equation (25) and not equation (27) should be
used which might give a completely different picture.

The conclusion drawn on the basis of equations (28—
30) could be verified by integrating equation (14), which
would be possible analytically for a horizontal tube and
a sphere at Ku = 0, using equation (30) for the function
f(B,s). Instead of equation (14), however, we should
prefer to take expressions from the literature.

4.2. Expressions from the literature

Hsu and Yang [3] obtained for free convection con-
densation of a pure vapour on a single sphere (expression
(31) in their paper) the equation

7<Ja>1’4 IJ“ (1—Bcos ¢)sin®” ¢ d¢

Nu(— == .

Ra 0 7 ‘ 1/4
<2J (I—Bsins"3</>d¢>

For definitions of the quantities Nu, Ja and Ra, the reader
may be referred to the original paper. The symbol B in
this equation represents the amplitude of the non-
isothermality function f{ B, ¢»), which coincides with those
of Memory and Rose [1], the above equation (30). The
authors [3] treated equation (31) numerically, concluding
that the heat transfer is practically unaffected by B.

However, when integrated analytically, equation (31)
gives

N<’JQ> B %H:“ —Bcosd)sin®* ¢ d¢>m

_ %(2 J “sin® ¢ d¢>>3'm (32)

0

; (1)

which is independent of B.
This result disagrees with our equation (14), which,
regarding equation (30), becomes

L4(=( 3 "
y = E<§L (1 + §Ku(l — Bcos d)))

x (1— Bcos ¢)sin®” ¢ d¢>]'4. (33)

To decide with certainty whether or not y depends on B,
anumerical evaluation of the integral would be necessary.
But, even without integration, the complexity of the inte-
grand suggests a dependence of y on B, except for Ku = 0.
The disagreement between equation (33) and equation
(32), concerning the quantity B, originates in the fact that

Hsu and Yang [3] allowed f(s) to change in the driving
temperature difference, used to define the heat transfer
coefficient, but not in the condensate subcooling term,
where they put, inconsistently, f(s) = 1, see [9].

Further, the integral in the expression for C,? given by
Memory and Rose [1], and quoted in the introduction of
the current paper, can easily be performed, resulting in

C_lj" (1—Bcos ¢)sin'’”® ¢ d¢
’ <2 J * int ddp— %B sin*? ¢>“4
0

b
2 7T . ) 3/4

=—<21[ sin'/? (bd(b) , (34)
3n

0

which is independent of the amplitude of the wall tem-
perature variation, and which immediately leads to the
Nusselt expression under isothermal conditions.

Equation (34) explains the findings of Bromley et al.
[4], who showed the average heat transfer coefficient on
horizontal tubes, determined with the average tem-
perature difference, to obey the Nusselt theory, despite
the considerable nonisothermality of the cooling surface
measured by the authors. The same applies to the exper-
iments by Memory and Rose [1]. In connection with the
numerical results reported in [1, 3], we may state that our
analytical expressions confirm the high accuracy of the
numerical evaluations of the integrals.

5. Conclusions

In this work, we derived a general equation for heat
transfer in laminar film condensation of a pure, saturated
vapour with free convection. The equation accounts for
the condensate subcooling and nonisothermality, the lat-
ter arising from the wall temperature. The model used is
that of Nusselt [2], the shape of the cooling surface is
arbitrary.

The general equation is applied to condensation with
no condensate inundation and analysed with respect to
the shape of nonisothermality. The analysis specifies the
conditions to be fulfilled for the mean heat transfer
coefficient, obtained with the average temperature differ-
ence, to be independent of temperature variations of the
surfaces sandwiching the condensate film. In cases of
condensation on a horizontal circular tube and on a
sphere at no condensate subcooling, it is shown that the
shape of the nonisothermality functions used [1, 3] do
not affect the condensation heat transfer.

2To prevent confusion, we should emphasise that C in equa-
tion (34) is completely different from the integration constant C
in the above derivations.
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